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Chiral symmetry breaking Physics G8069

October 5, 2005

References: Chiral symmetry breaking is discussed in Cheng & Li sections
5.4 and 5.5, but using a rather old-fashioned algebraic approach. Peskin &
Schroeder discuss chiral symmetry breaking on pages 667 – 670.

Now we’re ready to see how some of these ideas of symmetries and sym-
metry breaking are realized by the strong interactions. But first, some ter-
minology. If one can decompose

L = L0 + L1

where L0 is invariant under a symmetry and L1 is non-invariant but can
be treated as a perturbation, then one has “explicit symmetry breaking”
by a term in the Lagrangian. This is to be contrasted with “spontaneous
symmetry breaking,” where the Lagrangian is invariant but the ground state
is not. Incidentally, one can have both spontaneous and explicit symmetry
breaking, if L0 by itself breaks the symmetry spontaneously while L1 breaks
it explicitly.

Let’s return to the quark model of section 3.1. For the time being we’ll
ignore quark masses. With three flavors of quarks assembled into

ψ =

 u
d
s


we guessed that the strong interaction Lagrangian looked like

Lstrong = ψ̄iγµ∂µψ + · · ·
As discussed in section 5.1 the quark kinetic terms have an SU(3) symmetry
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ψ → Uψ. Assuming this symmetry extends to all of Lstrong the correspond-
ing conserved currents are

jµ a = ψ̄γµT aψ

where the generators T a are 3× 3 traceless Hermitian matrices.

In fact the quark kinetic terms have a larger symmetry group. To make
this maifest we need to decompose the Dirac spinors u, d, s into their left-
and right-handed chiral components. The actual calculation is identical to
what we did for QED in section 4.1. The result is

Lstrong = ψ̄Liγµ∂µψL + ψ̄Riγµ∂µψR + · · ·
Here

ψL =
1
2
(1− γ5)ψ ψR =

1
2
(1 + γ5)ψ

and

ψ̄L ≡ (ψL)†γ0 ψ̄R ≡ (ψR)†γ0 .

The easiest way to get this result is to note that the projection operators

PL =
1
2
(1− γ5) PR =

1
2
(1 + γ5)

satisfy

P 2
L = PL P 2

R = PR PL + PR = 11 .

In any case this chiral decomposition makes it clear that the quark kinetic
terms actually have an SU(3)L×SU(3)R symmetry that acts independently
on the left- and right-handed chiral components.†

ψL → LψL ψR → RψR L,R ∈ SU(3) (6.1)

It’s easy to work out the corresponding conserved currents; they’re just what
we had above except they only involve one of the chiral components:

jµ a
L = ψ̄LγµT aψL = ψ̄γµT a 1

2
(1− γ5)ψ

jµ a
R = ψ̄RγµT aψR = ψ̄γµT a 1

2
(1 + γ5)ψ

† The full symmetry is U(3)L × U(3)R. As we’ve seen the extra vector-like U(1) corresponds to
conservation of baryon number. The fate of the extra axial U(1) is a fascinating story I can’t
get in to now.
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It’s often convenient to work in terms of the “vector” and “axial-vector”
combinations

jµ a
V = jµ a

L + jµ a
R = ψ̄γµT aψ

jµ a
A = −jµ a

L + jµ a
R = ψ̄γµγ5T aψ

The question is what to make of this larger symmetry group. As we’ve
seen the vector current corresponds to Gell-Mann’s flavor SU(3). But what
about the axial current?

The simplest possibility would be for SU(3)A to be a manifest symmetry
of the particle spectrum.† We can rule this out right away. The axial charges

Qa
A =

∫
d3x j0 a

A

are odd under parity (see Peskin & Schroeder p. 65), so they change the
parity of any state they act on. If SU(3)A were a manifest symmetry there
would have to be scalar (as opposed to pseudoscalar) particles with the same
mass as the pions.

Another possibility is for SU(3)A to be explicitly broken by Lstrong: after
all we’ve only been looking at the quark kinetic terms. I can’t say anything
against this possibility, except that we might as well assume SU(3)A is a
valid symmetry and see where that assumption leads.

So we’re left with the idea that SU(3)A is a valid symmetry of the strong
interaction Lagrangian, but is spontaneously broken by a choice of ground
state. What order parameter could signal symmetry breaking? It’s a bit
subtle, but suppose the fermion billinear ψψ̄ aquires an expectation value:

〈0|ψψ̄|0〉 = µ311 .

Here µ is a constant with dimensions of mass, and 11 is the identity matrix
both in flavor space and spinor space. In terms of chiral spinors‡ ψ =(

ψL

ψR

)
this is equivalent to

〈ψLψ†
R〉 = µ311 〈ψRψ†

L〉 = µ311 〈ψLψ†
L〉 = 〈ψRψ†

R〉 = 0 . (6.2)

What’s nice is that this expectation value

• is invariant under Lorentz transformations (check!)

† Picky, picky: the symmetry group is really SU(3)L × SU(3)R. The linear combination R − L
that appears in the axial current doesn’t generate a group, since two axial charges commute to
give a vector charge. I’ll call the axial symmetries SU(3)A anyways.

‡ I’m switching notation a bit. Previously ψL and ψR were 4-component objects, Dirac spinors
two of whose components vanished. Now ψL and ψR denote 2-component objects.
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• is invariant under SU(3)V transformations ψL → UψL, ψR → UψR

• completely breaks the SU(3)A symmetry

That is, in (6.1) one needs to set L = R in order to preserve the expectation
value (6.2).

So the claim is that strong-coupling effects in QCD cause qq̄ pairs to
condense out of the trivial (perturbative) vacuum; the expectation value
(6.2) is supposed to be generated dynamically by the strong interactions.

In fact, the expectation value can be a bit more general. Whenever a
continuous symmetry is spontaneously broken there should be a manifold
of inequivalent vacua. We can find this space of vacua just by applying
SU(3)L × SU(3)R transformations to the vev (6.2). The result is

〈ψLψ†
R〉 = µ3U 〈ψRψ†

L〉 = µ3U † 〈ψLψ†
L〉 = 〈ψRψ†

R〉 = 0

where U = eiλaT a is an SU(3) matrix. In terms of Dirac spinors this is
equivalent to

〈0|ψψ̄|0〉 = µ3e−iλaT aγ5
. (6.3)

If this is right, the space of vacua of QCD is labeled by an SU(3) matrix U .
We’d expect to have dim SU(3) = 8 massless Goldstone bosons that can be
described by a field U(t,x). If we’re at very low energies then the dynamics
of QCD reduces to an effective theory of the Goldstone bosons. What could
the action be? As we’ll discuss in more detail in the next chapter, there’s
a unique candidate with at most two derivatives: the non-linear σ-model
action from the last homework!

Leff =
1
4
f2Tr

(
∂µU †∂µU

)
This action provides a complete description of the low-energy dynamics of
QCD with three massless quarks.

In the real world various effects (quark mass terms, electromagnetism,
. . .) explicitly break SU(3)A. This turns out to give the would-be Goldstone
bosons a small mass. But we’d still expect to have eight anomalously light
scalar particles – the meson octet π, K, η!

Finally we can understand the origins of SU(3)flavor symmetry and why
the meson octet is so light. Current estimates are that the “chiral conden-
sate” has a value

〈ūu〉 ≈ 〈d̄d〉 ≈ 〈s̄s〉 ≈ (260 MeV)3
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This is large compared to the light quark masses

mu ≈ 3 MeV md ≈ 6 MeV ms ≈ 120 MeV

but small compared to the heavy quark masses

mc ≈ 1.2 GeV mb ≈ 4.2 GeV mt ≈ 175 GeV


